// SHA Testing - Secure Hash Algorithm visualization - sha256e // John F Clavin - June 29, 2019 - This became Visualization 1 var sha256; var shaInts = []; var colorArray = []; var rando; var randoStr; var vCount; var hCount; var lineCount; var restartFlag; var testInts = []; function setup() { // var sha1Canvas = createCanvas(792, 792); // sha1Canvas.parent('sha1Container'); createCanvas(792, 792); background(226); noStroke(); rectMode(CENTER); frameRate(12); createColors(); initialize(); } function draw() { if (lineCount == 1) { sha256 = Sha256.hash(randoStr); } for (var g = 0; g < 63; g = g + 2) { var pI = parseInt(sha256.substr(g, 2), 16); shaInts.push(pI); } for (var h = 0; h < 32; h++) { var c; var sI = shaInts[h]; if ((sI >= 0) && (sI < 32)) { c = colorArray[0]; } else if ((sI >= 32) && (sI < 64)) { c = colorArray[1]; } else if ((sI >= 64) && (sI < 96)) { c = colorArray[2]; } else if ((sI >= 96) && (sI < 128)) { c = colorArray[3]; } else if ((sI >= 128) && (sI < 160)) { c = colorArray[4]; } else if ((sI >= 160) && (sI < 192)) { c = colorArray[5]; } else if ((sI >= 192) && (sI < 224)) { c = colorArray[6]; } else { c = colorArray[7]; } fill(c); var horizontal = hCount + 24; var vertical = vCount + 24; rect(horizontal, vertical, 24, 24); hCount = hCount + 24; } rando++; randoStr = rando.toString(); sha256 = Sha256.hash(randoStr); shaInts.length = 0; hCount = 0; vCount = vCount + 24; if (lineCount >= 32) { restartFlag = true; noLoop(); } lineCount++; } function mousePressed() { if (restartFlag === true) { if (isMouseOver() === true) { initialize(); } } return false; } function initialize() { background(226); restartFlag = false; rando = floor(random(1500)); randoStr = rando.toString(); lineCount = 1; hCount = 0; vCount = 0; loop(); } function isMouseOver() { if ((mouseX < 0) || (mouseX > width) || (mouseY < 0) || (mouseY > height)) { return false; } else { return true; } } function createColors() { colorArray[0] = color(240, 0, 0); colorArray[1] = color(240, 120, 0); colorArray[2] = color(230, 230, 0); colorArray[3] = color(0, 220, 0); colorArray[4] = color(0, 0, 240); colorArray[5] = color(112, 0, 46); colorArray[6] = color(190, 0, 248); colorArray[7] = color(0, 0, 0); } class Sha256 { /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /*SHA-256(FIPS 180-4)implementation in JavaScript (c) Chris Veness 2002-2018 */ /* MIT Licence */ /* www.movable-type.co.uk/scripts/sha256.html */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ static hash(msg, options) { const defaults = { msgFormat: 'string', outFormat: 'hex' }; const opt = Object.assign(defaults, options); switch (opt.msgFormat) { default: case 'string': msg = utf8Encode(msg); break; case 'hex-bytes': msg = hexBytesToString(msg); break; } // constants [§4.2.2] const K = [ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 ]; // initial hash value [§5.3.3] const H = [ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 ]; // PREPROCESSING [§6.2.1] msg += String.fromCharCode(0x80); // add trailing '1' bit (+ 0's padding) to string [§5.1.1] // convert string msg into 512-bit blocks (array of 16 32-bit integers) [§5.2.1] const l = msg.length / 4 + 2; // length (in 32-bit integers) of msg + ‘1’ + appended length const N = Math.ceil(l / 16); // number of 16-integer (512-bit) blocks required to hold 'l' ints const M = new Array(N); // message M is N×16 array of 32-bit integers for (let i = 0; i < N; i++) { M[i] = new Array(16); for (let j = 0; j < 16; j++) { // encode 4 chars per integer (64 per block), big-endian encoding M[i][j] = (msg.charCodeAt(i * 64 + j * 4 + 0) << 24) | (msg.charCodeAt(i * 64 + j * 4 + 1) << 16) | (msg.charCodeAt(i * 64 + j * 4 + 2) << 8) | (msg.charCodeAt(i * 64 + j * 4 + 3) << 0); } // note running off the end of msg is ok 'cos bitwise ops on NaN return 0 } // add length (in bits) into final pair of 32-bit integers (big-endian) [§5.1.1] // note: most significant word would be (len-1)*8 >>> 32, but since JS converts // bitwise-op args to 32 bits, we need to simulate this by arithmetic operators const lenHi = ((msg.length - 1) * 8) / Math.pow(2, 32); const lenLo = ((msg.length - 1) * 8) >>> 0; M[N - 1][14] = Math.floor(lenHi); M[N - 1][15] = lenLo; // HASH COMPUTATION [§6.2.2] for (let i = 0; i < N; i++) { const W = new Array(64); // 1 - prepare message schedule 'W' for (let t = 0; t < 16; t++) W[t] = M[i][t]; for (let t = 16; t < 64; t++) { W[t] = (Sha256.σ1(W[t - 2]) + W[t - 7] + Sha256.σ0(W[t - 15]) + W[t - 16]) >>> 0; } // 2 - initialise working variables a, b, c, d, e, f, g, h with previous hash value let a = H[0], b = H[1], c = H[2], d = H[3], e = H[4], f = H[5], g = H[6], h = H[7]; // 3 - main loop (note '>>> 0' for 'addition modulo 2^32') for (let t = 0; t < 64; t++) { const T1 = h + Sha256.Σ1(e) + Sha256.Ch(e, f, g) + K[t] + W[t]; const T2 = Sha256.Σ0(a) + Sha256.Maj(a, b, c); h = g; g = f; f = e; e = (d + T1) >>> 0; d = c; c = b; b = a; a = (T1 + T2) >>> 0; } // 4 - compute the new intermediate hash value (note '>>> 0' for 'addition modulo 2^32') H[0] = (H[0] + a) >>> 0; H[1] = (H[1] + b) >>> 0; H[2] = (H[2] + c) >>> 0; H[3] = (H[3] + d) >>> 0; H[4] = (H[4] + e) >>> 0; H[5] = (H[5] + f) >>> 0; H[6] = (H[6] + g) >>> 0; H[7] = (H[7] + h) >>> 0; } // convert H0..H7 to hex strings (with leading zeros) for (let h = 0; h < H.length; h++) H[h] = ('00000000' + H[h].toString(16)).slice(-8); // concatenate H0..H7, with separator if required const separator = opt.outFormat == 'hex-w' ? ' ' : ''; return H.join(separator); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ function utf8Encode(str) { try { return new TextEncoder().encode(str, 'utf-8').reduce((prev, curr) => prev + String.fromCharCode(curr), ''); } catch (e) { // no TextEncoder available? return unescape(encodeURIComponent(str)); // monsur.hossa.in/2012/07/20/utf-8-in-javascript.html } } function hexBytesToString(hexStr) { // convert string of hex numbers to a string of chars (eg '616263' -> 'abc'). const str = hexStr.replace(' ', ''); // allow space-separated groups return str === '' ? '' : str.match(/.{2}/g).map(byte => String.fromCharCode(parseInt(byte, 16))).join(''); } } static ROTR(n, x) { return (x >>> n) | (x << (32 - n)); } static Σ0(x) { return Sha256.ROTR(2, x) ^ Sha256.ROTR(13, x) ^ Sha256.ROTR(22, x); } static Σ1(x) { return Sha256.ROTR(6, x) ^ Sha256.ROTR(11, x) ^ Sha256.ROTR(25, x); } static σ0(x) { return Sha256.ROTR(7, x) ^ Sha256.ROTR(18, x) ^ (x >>> 3); } static σ1(x) { return Sha256.ROTR(17, x) ^ Sha256.ROTR(19, x) ^ (x >>> 10); } static Ch(x, y, z) { return (x & y) ^ (~x & z); } // 'choice' static Maj(x, y, z) { return (x & y) ^ (x & z) ^ (y & z); } // 'majority' }